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Objective: To test whether the probability of having a live birth (LB) with the first IVF cycle (C1) can be predicted and personalized for
patients in diverse environments.

Design: Retrospective validation of multicenter prediction model.

Setting: Three university-affiliated outpatient IVF clinics located in different countries.

Patient(s): Using primary models aggregated from >13,000 C1s, we applied the boosted tree method to train a pre[VF-diversity model
(PreIVF-D) with 1,061 C1s from 2008 to 2009, and validated predicted LB probabilities with an independent dataset comprising 1,058
C1s from 2008 to 2009.

Intervention(s): None.

Main Outcome Measure(s): Predictive power, reclassification, receiver operator characteristic analysis, calibration, dynamic range.

Result(s): Overall, with PreI[VE-D, 86% of cases had significantly different LB probabilities compared with age control, and more than
one-half had higher LB probabilities. Specifically, 42% of patients could have been identified by PreI[VF-D to have a personalized
predicted success rate >45%, whereas an age-control model could not differentiate them from others. Furthermore, Pre[VF-D
showed improved predictive power, with 36% improved log-likelihood (or 9.0-fold by log-scale; >1,000-fold linear scale), and
prediction errors for subgroups ranged from 0.9% to 3.7%.

Conclusion(s): Validated prediction of personalized LB probabilities from diverse multiple
sources identify excellent prognoses in more than one-half of patients. (Fertil Steril®
2013;99:1905-11. ©2013 by American Society for Reproductive Medicine.)
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highest per-treatment success rate

for most patients diagnosed with
infertility. However, it has remained
underutilized; fewer than 3% of the
estimated 7 million women/couples
suffering from infertility access IVF.
Although there are likely many reasons
for this underutilization, such as high

I n vitro fertilization (IVF) offers the

cost, limited insurance reimbursement,
and success with other treatments,
unclear benefits and unrealistic expec-
tations compromise a patient’s level of
confidence in pursuing IVF treatment.
Some women erroneously believe
that IVF secures their chances to have
a baby despite delayed family building,
whereas others may not realize that
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their personalized success rates are
much higher than typically quoted
with the use of age-based or filtered
reporting. In the former scenario,
a delay in trying to conceive, or in
pursuing IVF, not only compromises
a woman’s personalized chances of
success, but contributes to the lowering
of overall and age-based success rates
and the perceived limited success of
IVE. On the other hand, potential
age-based underestimation of success
rates may discourage women >35
years of age from pursuing a treatment
that in reality offers them excellent
chances of having a baby.

Although informative guides (e.g.,
Fertistat, American Society for Repro-
ductive Medicine patient resources,
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public reporting by the Society for Assisted Reproductive
Technologies) have been available to raise awareness of the
risks of infertility and when to seek infertility medical care,
there was previously no rigorously validated online tool
providing quantitative personalized IVF success rates to
infertility patients based on prediction modeling of multicen-
ter North American and European IVF outcomes data (1-4).
Personalized quantitative prognostics convey an important
message to patients and society at large that IVF success is
largely predictable, based on science and evidence, rather
than a roll of the dice. Having this resource alone may
minimize uncertainty and confusion among patients and
enhance their confidence in infertility treatment options.

Previously, we reported the first validated clinic-specific
models predicting live birth and multiple birth probabilities
and their performance as quantitatively measured by predic-
tive power, discrimination, calibration, dynamic range, and
reclassification (5, 6). We received enthusiastic requests
from many IVF providers and infertility patients asking our
research team to develop a prediction model that is
applicable to diverse patient populations despite cross-
center differences in clinical protocols. In addition, we were
asked to make such advanced IVF prediction modeling acces-
sible to patients. Other research groups have attempted to
develop multicenter or cross-center prediction models
for IVF outcomes, but have not been successful in their
validation (7).

We aimed to push the performance and utility of IVF
prediction modeling beyond single-center validation to
develop a more diverse multicenter validated prediction
model, PrelVF-Diversity (PreI[VF-D), to predict the probability
of having a live birth in a patient’s first IVF treatment. Having
diverse representation of patient population and treatment
protocols makes this predictive technology relevant to
patients and doctors beyond the centers involved in this
research. In parallel to the statistical research, enterprise-
grade engineering implementation has made the personalized
prediction of IVF success accessible in real time, via a paid
online web-based tool. Reporting of both predicted probabil-
ity and percentile ranking may also support IVF providers in
the refining clinical protocols based on prognostics.

Here, we report the methods and validation results of the
multicenter prediction model, Pre[VF-D, which predicts the
probability of having a live birth with a patient’s first IVF
treatment. We discuss the strengths, limitations, and
applications of PreIVF-D, as well as the potential impact of
personalized prognostics on the overall IVF success rates
and access to IVF at the population level.

METHODS
Patients, IVF Treatments, and Clinical Outcomes

The retrospective cohort comprised 13,076 first IVF treatment
cycles using fresh autologous eggs and fresh embryo transfers
(ETs) that were performed at three academically affiliated
private IVF clinics, located in three different countries:
7,605 cases from Boston IVF (BIVF), Waltham, Massachusetts,
from January 1, 2000, to December 31, 2009; 4,078 cases
from IVI-Valencia (IVIV), Spain, from January 1, 2005, to

December 31, 2008; and 1,393 cases from Ottawa Fertility
Centre (OFC), Ottawa, Canada, from January 1, 2006, to
December 31, 2009. Inclusion and exclusion criteria were
applied to define cases for generating clinic-specific
prediction models for each clinic (Fig. 1). Each center obtained
its own Institutional Review Board approval to conduct
retrospective IVF prediction modeling research with
researchers from Univfy.

Patients underwent ovarian stimulation protocols
according to a combination of physician’s recommendation
and clinical protocol as described previously (8-10).
Embryos were cultured according to each clinic’s standard
protocols. Ultrasound-guided ET was performed 3-5 days
after oocyte retrieval according to clinic protocol. The number
of embryos transferred was based on national and clinic
guidelines as well as individual patient needs. Patients were
followed for at least 1 year from the start of their IVF cycles
to confirm IVF and pregnancy outcomes.

Data Collection, Exclusion Criteria, Definition of
Live Birth, and Variables

Baseline demographic, clinical and laboratory data were
collected according to standard clinic practices as described
previously (8-10). Medical record review was used to

FIGURE 1

Fresh Autologous IVF = First Cycles Only

BIVF: 2000 - 2009 1VI: 2005 - 2008 OFC: 2006 - 2008:
N =7,605 N=4,078 N=1,393
Apply Exclusion & Inclusion Criteria
BIVF: 2000 — 2007 1VI: 2005 — 2007 OFC: 2006 — 2008:
N=6,641 N=3,256 N=1,060

Generate Clinic-Specific Prediction Models

PrelVF - BIVF PrelVF - VI PrelVF - OFC

Decompose to Model Components

Generate PrelVF-D with Model Components & Validate

N

Training Set Independent Test Set

BIVF, IVI, OFC: BIVF, IVI, OFC:
2008 - 2009 2008 - 2009
N=1,061 N=1,058

Clinical data sources, datasets, and prediction model design used to
generate and validate PrelVF-Diversity (PrelVF-D), a prediction
model that predicts the probability of live birth with a patient's first
IVF treatment. Outcomes data on first IVF cycles were extracted
from deidentified data sets provided by three clinics: Boston IVF
(BIVF; red), Instituto Valenciano de Infertilidad (IVI; blue), and
Ottawa Fertility Centre (OFC; green). N indicates the number of IVF
treatments. After applying inclusion and exclusion criteria,
outcomes data from eligible cycles were used to generate clinic-
specific prediction models (ovals), which were each decomposed to
model components (circles) (patent pending). Using a training set,
PrelVF-D (oval) was generated by selecting model components from
all three clinics. PrelVF-D was validated by testing on the
independent data set comprising data from all three clinics: training
and independent test datasets (pale orange).
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confirm pregnancy outcome. Each clinic obtained approval
from its Institutional Review Board to perform retrospective
data collection, aggregation, and deidentification for
statistical analysis and prediction modeling.

We excluded first IVF cycles that met any of the following
criteria: A prior IVF cycle had been performed at another
fertility clinic which could be ascertained from the database
alone; the IVF cycle was canceled before oocyte retrieval;
clinical outcome was not known; the patient’s age was >43
years; ET occurred on days other than day 2-6; and IVF cycles
that did not use gonadotropin injection.

The outcome of an IVF cycle was defined as “live birth” if:
1) the fresh ET directly resulted in a live birth; or 2) the fresh
ET did not result in a live birth, but the transfer of
cryopreserved-thawed embryos that were produced by that
fresh IVF cycle resulted in a live birth. Linking the outcomes
of fresh and cryopreserved ET in this way provided
information on the total reproductive potential of the
embryos produced by a fresh cycle (5, 6, 11, 12).

We analyzed the following variables, each of which was
available from at least one clinic. Patient’s demographics
and reproductive history included age at the time of first IVF
treatment, body mass index, smoking status, gravidity, parity,
pregnancy losses before 20 weeks’ gestation, number of ec-
topic pregnancies, antral follicle count, day 3 serum FSH,
and year. Clinical diagnoses included polycystic ovarian syn-
drome or disease, diminished ovarian reserve, tubal disease,
endometriosis, recurrent miscarriage, unexplained infertility,
uterine causes, other causes, male factor. Male partner’s repro-
ductive health included age, total motile sperm count, use of
sperm extraction method, and use of donor sperm.

Statistical Analysis

We generated the PreI[VF-D model with the use of a multistep
procedure. First, we used baseline clinical variables and data
that were available before starting IVF, to develop
clinic-specific PreIVF models. Each clinic-specific PreIVF
model was trained with variables and eligible outcomes
data obtained from that clinic alone: PreIVF-BIVF: 6,641
cases from January 1, 2000, to December 31, 2007;
PrelVF-IVI: 3,256 cases from January 1, 2005, to December
31, 2007; and PrelVF-OFC: 1,060 cases from January 1,
2006, to December 31, 2008. Briefly, for each clinic-specific
model, we computed the log-likelihood based on the Bernoulli
distribution and applied generalized boosted models (GBM),
a free software implementation of stochastic gradient boost-
ing algorithm, to build a boosted tree model using a maximum
of 70,000 trees and tenfold cross-validation (5, 6).

We built PreI[VF-D by blending and weighting the
individual components from all three clinic-specific models to
form a resulting model that was adjusted for the different num-
bers of cases available from each clinic. Training of Pre[VF-D
was performed with a training dataset comprising an aggregate
of 1,061 independent cases that were not used to generate the
original clinic-specific Pre[VF models: BIVF: 483 cases from
January 1, 2009, to December 31, 2009; IVI: 411 cases from
January 1, 2008, to December 31, 2008; and OFC: 167 cases
from January 1, 2009, to December 31, 2009 (Fig. 1).

Fertility and Sterility®

PrelVF-D was compared with an age-based control model
(Age model) that was generated from 10,957 cases by
applying GBM to patient’s age alone based on age categories
(<35, 35-37, 38-40, 41-42) that are used by the Society for
Assisted Reproductive Technologies and Centers for Disease
Control and Prevention (1, 2, 4). We used all available
cases, including those used to develop each clinic-specific
model, to generate this Age model, to allow the most stringent
conditions for comparing the PreIVF-D and Age models. The
performance of the PrelVF-D model was measured and vali-
dated with the use of a further independent test set that com-
prised 1,058 test cases: BIVF: 481 cases from January 1, 2008,
to December 31, 2009; IVI: 411 cases from January 1, 2008, to
December 31, 2008; and OFC: 166 cases from January 1, 2009,
to December 31, 2009 (Fig. 1). All of the results reported are
validated test results of Pre[VF-D, not merely a description
of the training set or results pertaining to clinic-specific Pre-
IVF models.

We determined the posterior probability of having a live
birth in the first IVF cycle based on the collective phenotype
profile of the patient and her male partner, or the patient’s
phenotype profile alone if donor sperm is used. Predictive
power is described as the improvement in the log-
likelihood of predicting the probability of having a live birth
in the first IVF cycle with the PreI[VF-D relative to the Age
model, using Baseline-Diversity (Baseline-D), a control
model in which no predictors are used. In other words,
Baseline-D is the mean probability of having a live birth
in the first IVF cycle if not a single predictor, not even
age, is used. Log-likelihoods (LL) were computed with the
use of GBM.

% improvement = (I:(LLpreW]:—D — LLpaseline)

- (LLAge - LLBaseline)]/[LLAge
- LLBaseline}) X 100%

To compare the clinical utility of PreI[VF-D, frequency
distributions of predicted live birth probabilities for Baseline
control, Age-D, and Prel[VF-D were compared, and the
validity of this comparison was determined by receiver
operating characteristic (ROC) analysis. Dynamic range
describes the probabilities of live birth that can be predicted
with the use of Pre[VF-D compared with Age-D. Calibration
of PrelVF-D was tested by comparing the predicted versus
observed probabilities of live birth of test cases with the
those of Age-D based on the Holsmer-Lemeshow good-
ness-of-fit test. Those test cases were defined by six groups
with successive probabilities of live birth: <10.0%, 10.0%-
19.9%, 20.0%-29.9%, 30.0%-39.9%, 40.0%-45.0%, and
>45.0%.

RESULTS
Training and Test Sets for PrelVF-D

Together the training and test sets comprised 2,119 first
fresh IVF cycles that used the patients’ own eggs. Sepa-
rately, the training set that was used to train PrelVF-D
showed a live birth rate of 38.1% (95% confidence interval
[CI] 0.35-0.41), and the test set that was used to test
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validation of PreIVF-D showed a live birth rate of 38.4%
(959% CI 0.35-0.41). The mean values for each variable
did not differ significantly between training and test sets
(Table 1).

Predictors and Their Relative Importance

The PrelVF-D model assigned relative importance to each
prognostic factor, with the total relative importance set
arbitrarily at 100%. Variables with the highest nonredundant
prognostic contribution to the PrelVF-D model, and their
relative importance, were age of patient (60.1%), total motile
sperm count (9.6%), body mass index (9.5%), day 3 serum FSH
(5.0%), and antral follicle count (4.5%); other factors, each
with <3.0% relevance, made up the remaining 11.4% of
relative importance. Therefore, before a patient’s first IVF
treatment, 60% of her personalized prognosis is predicted
by her age and 40% by other clinical factors. More
importantly, the relative influence of various factors is not
the same for each patient, and these measures serve as an
overview only.

Predictive Power and Prediction Error

The ability to predict the probability of live birth is improved
by 35.7% with PrelVF-D compared with Age-D. This
improvement represented an increase in predictive power by
9.0-fold on the log scale (>1,000-fold in linear scale).
Sometimes, in predictive modeling, increased predictive
power may be achieved at the expense of accuracy, by
increasing prediction error (prediction error = 1 — accuracy),

which is a separate measure from predictive power. Prediction
error is determined for a subgroup of patients rather than
specific individual patients. For each of the models,
PrelVF-D and Age-D, we divided the test set into subgroups
of patients according to their predicted probabilities and
measured the prediction error for each subgroup (Table 2).
Most remarkably, PreIVF-D has prediction errors of only
0.9% and —1.2% for patients who had predicted live birth
probabilities of >45.0% and 40.0-45.0%, respectively.
Therefore, we confirmed that calibration or accuracy has
not been sacrificed in achieving the predictive power shown
in the PreI[VF-D model.

Measure of Utility (Usefulness) by Ranking,
Dynamic Range, Reclassification, and
Discrimination

When determining whether a prediction model is clinically
useful, predictive power must first be confirmed to be superior
to currently available methods. However, for a predictive
model to be useful, its ability to rank patients correctly
according to prognosis (e.g., discrimination) must be
equivalent to or better than the control model. The ranking
provided by PreIVF-D is more reliable than the control,
because ROC analysis showed that the ability of Pre[VF-D
to discriminate patients with differential probabilities of live
birth showed an improvement of 3.2% over Age-D (the areas
under the ROC curves [AUCs] for PrelVF-D and Age-D
measured 0.634 and 0.614, respectively.) Furthermore, the
dynamic range of predicted probabilities is extended from

TABLE 1

Comparison of variables between the PrelVF-D training and test datasets.

Training set (n = 1,061)

Variable Mean®
Age, y 34.5
Gravidity 0.8
Parity 0.2
No. of ectopic pregnancies 0.03
No. of pregnancy losses (<20 wk) 0.4
Smoking® 0.3
Year 2008.6
Body mass index 25.5
Serum day 3 FSH, mIU/mL 7.3
Antral follicle count 294
Male partner's age, y 37.2
Total motile sperm count (million/mL) 54.3
Use of frozen sperm® 0.1
Use of donor sperm® 0.05
Clinical diagnoses
Tubal factor® 0.1
Diminished ovarian reserve® 0.08
Endometriosis® 0.08
Male factor® 0.6
Recurrent rmscarriageb 0.03
Polycystic ovaries/polycystic ovarian syndrome® 0.09
Unexplained infertility® 0.05

Independent test set (validation) (n = 1,058)

SD Mean® SD
4.2 345 4
1.2 0.9 B
0.5 0.2 0.6
0.2 0.07 0.3
0.9 0.5 1.0
0.5 0.3 0.5
0.5 2008.6 0.5
6.1 26.5 6.8
2.6 7.7 35
25.9 325 29.2
6.0 37.4 56
81.0 52.4 79.8
0.3 0.1 0.3
0.21 0.05 0.22
0.3 0.1 0.4
0.27 0.07 0.26
0.27 0.09 0.29
0.5 0.6 0.5
0.17 0.04 0.19
0.29 0.09 0.28
0.23 0.05 0.21

2 For continuous variables, the mean indicates the mean value of each variable. For categoric variables, the mean indicates the average number of positive occurrences. There was no significant

difference in the mean values between training and test sets for all variables (P>.5).
b Categoric variables have values “true” or “false.”

Choi. Predicting first IVF cycle outcomes. Fertil Steril 2013.

1908

VOL. 99 NO. 7 /JUNE 2013



Fertility and Sterility®

TABLE 2

Percentage of patients and their probabilities of live birth predicted by each prediction model: PrelVF-D, Age Control, and Baseline Control (no

predictor).

Predicted probability Baseline Baseline

of live birth (no predictor) prediction error
>45.0%

40.0%-45.0%
30.0%-39.9%
20.0%-29.9%
10.0%-19.9%
<10.0%

100% —3.0%

Age Age prediction PrelVF-D
control error PrelVF-D prediction error
0% 41.6% 0.9%
49.6% —4.9% 13.5% —1.2%
24.2% —1.5% 19.3% —-0.1%
19.1% 0.2% 13.2% —3.7%
0% 7.3% —-1.5%
7.1% —1.1% 5.1% —1.7%

Note: The use of PrelVF-D identified the top 18.3%, 41.5%, 55.1%, and 63.9% percentiles of patients who have the highest probabilities of live birth at >50.0%, >45.0%, >40.0%, and >35.0%,
respectively. A negative prediction error indicates that the mean predicted probability is lower than the mean observed probability in that group.

Choi. Predicting first IVF cycle outcomes. Fertil Steril 2013.

having four discrete probabilities (age <35y, 49.6%; age 35-
37y, 24.2%; age 38-40y, 19.1%; age 41-42 y, 7.1%) to pre-
dicted live birth probabilities, ranging from 3.9% to 57.0%.

Specifically, reclassification analysis showed that with
PrelVE-D, 86% of cases had significantly different live birth
probabilities compared with age control (P<.05), with 57%
and 28% showing higher and lower live birth probabilities, re-
spectively; 42% of patients were found to have predicted live
birth probabilities >45.0% and 18.3% to have predicted live
birth probabilities of >50.0%. In contrast, no patients could
be identified by Age-D to have >450% live birth probabilities.

Note that the difference in ranking between PreIlVF-D and
Age-D is not merely a shift of the same patients being told
that they have probabilities of 40%-45% when their probabil-
ities are >45%. The same patients are not necessarily at the
top of each model’s percentile ranking. For example, a patient
predicted to have 38% live birth probability by age may be re-
classified to have 46% live birth probability by PreI[VF-D, and
because PreIVF-D has improved predictive power, the proba-
bility of 45% as predicted by PreIVF-D is closer to the truth by
9 times on the log-scale (>1,000 times on a linear scale); this
patient is also part of a group whose PrelVF-D prediction dif-
fers from observed live birth rate by 0.9%.

We also made our best attempt to refine the age control
model. We applied the boosted tree method to analyze age
with the use of more than 10,000 first IVF cycles, without
restricting age to conventionally defined categories, to test
whether the age model—overall or for the high-prognosis
group—could perform better. However, the predictive power
and AUC were not improved (data not shown). Therefore,
PrelVF-D still has the best performance overall and in each
of the measured parameters.

DISCUSSION

First, and foremost, this research work was performed in
response to requests from many patients and reproductive
endocrinology-infertility specialists (REIs). Patients indicated
that they would like to receive predicted probabilities of
treatment success that are personalized to their clinical data
beyond age-based statistics, and REIs indicated that they
wished to embrace personalized medicine and deliver
transparent prognoses that are tailored to each patient’s
clinical situation, but that they lacked an accurate and

validated user-friendly tool to support this goal. Therefore,
we responded to these requests by testing whether a prediction
model could be validated to provide personalized predicted
probabilities for a patient’s first IVF treatment. This
information can be used to raise awareness of the benefits
of IVF and to support a patient’s decision to pursue IVF.

Second, a key strength of our study design is the use of
data from multiple centers with diverse patient populations
without requiring each individual clinic’s data set to comply
with a specific mandatory format or set of clinical protocols.
For example, cases may have data on day 3 FSH levels or
antral follicle count, but for the purpose of model building,
neither was mandatory, because our goal was to develop
not only a prediction model but also an approach to building
a prediction model that can be easily replicated or extended to
include centers that may have different clinical protocols or
have collected different variables in their databases. To our
knowledge, multicenter models that are developed via
decomposition and recompilation of individual model
components without merging and normalization of the
centers’ actual data sets have not been reported in the medical
literature. Not only is this novel method critical to maximize
the utility of information from diverse clinics and data infra-
structures to provide high-quality personalized prognoses to
patients contemplating IVF, but it also has far-reaching
implications beyond reproductive medicine. This method of
accessing diverse data infrastructures without standardiza-
tion overcomes a major obstacle in personalized medicine
and health care technology: the inability to analyze
retrospective multicenter data because of nonuniformity of
data infrastructure.

Third, we applied stringent methods, including: the use of
distinct training and test sets to develop and validate the
prediction model, respectively; defining the outcome measure
to reflect the total reproductive potential of the first IVF cycle
by linking the fresh cycle with its frozen ETs; and evaluating
PreIVF-D based on objective and quantitative measures that
are required for clinical utility. We demonstrate that these
criteria—predictive power, the ability to rank cases correctly
based on predicted probabilities, dynamic range, and reclassi-
fication rate—are met to support clinical utility (5, 6).
Although most papers report AUC based on ROC analysis as
a way to determine discrimination, AUC measures depend
heavily on the cases that are included in the analysis. For
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example, had we included cases with age >43 years, the AUC
of the model would have increased dramatically, because that
is an age group for which outcomes prediction is “easy.” In
addition, the measures of a prediction model and its utility
are based on the data available at the time that a decision is
made. For example, we have shown previously that based
on data available by the time of ET, modeling can provide
personalized predictions of live birth outcomes with an AUC
of 0.8 (5). However, because the IVF treatment would be
complete at that point with pending serum pregnancy test
results, the utility of that model is low, despite extremely
high predictive power and discrimination.

When interpreting the results, it is important to note the
meaning of various statistical terms. We use log-likelihood to
measure predictive power, which means “how likely the data
will fit the model,” or for nonstatisticians, “how much more
likely the test data are represented by one prediction model
over the control model.” Owing to discrepancy between the
common English language and statistical definitions, the words
“predictability” and “accuracy” are often used interchangeably
in the English language, but in the context of reporting research
findings in an original research article, these terms have distinct
meanings. When measuring predicted live birth probabilities,
the prediction error for a group of patients is the difference
between the expected live birth probability and the observed
live birth probability as a percentage of the observed live birth
probability. Prediction error may also be expressed in terms of
accuracy, where accuracy = 1 — prediction error. The overall
accuracy of all subgroups is measured by calibration. Therefore,
the terms calibration, prediction error, and accuracy all
measure the proximity between observed and expected live
birth probabilities, but they do not inform us of a model’s
predictive power (13-17).

On a practical level, the most important reference is the
table that shows how a particular predicted probability
correlates with percentile rankings based on the PrelVF-D
and age control models (Table 2). This information is expected
to help patients understand their prognoses in a context that is
meaningful to them. In areas outside of reproductive medicine,
most people relate excellent chances of an outcome with 90%-
100%, good chances with 80%-90%, and poor chances with
<50%. A major challenge in counseling patients about the
benefits of IVF is that without a percentile scale, a patient
may not realize that having >40% chance to have a baby
with IVF is very good. This reference can also support
physicians in refining or developing prognosis-driven clinical
protocols. For example, a clinic may establish clinical protocols
for patients who have unexplained infertility based on varying
levels of predicted probability of live birth. Over time, collec-
tion of outcomes data can be fed back into the prediction model
to support a data-driven method to further refine protocols.

Our research design meets with a couple of constraints.
First, the availability of IVF live birth outcomes lag behind
treatment start dates for more than a year because of the
duration of pregnancy, follow-up collection of live birth
outcomes, and time required to develop and validate
prediction models, so it is not possible to have a prediction
model that is validated for patients who are going through
IVF in real time. However, because Pre[VF-D predicts live

birth probability in terms of a patient’s full reproductive
potential (e.g., live birth with the transfer of fresh and/or
frozen embryos), rather than the live birth probability per
fresh ET, the prediction is not likely to be affected by changes
in ET policies. Second, as outcomes data comprising other
variables, such as serum antimullerian hormone levels or
preimplantation genetic screening data, become available,
their use can also be incorporated into prediction models.

Although it is not possible for us to prove within the scope
of the present study that PreIVF-D is definitively valid for
a clinic outside of this study, the current representation of
diverse patient populations and clinical protocols from three
collaborating clinics in three different countries should allow
clinics that share similar demographics and practice patterns
to use Pre[VF-D with confidence. Furthermore, we invite
research collaboration to help a clinic to test whether
PreI[VF-D is validated for its clinic-specific data. This
validation work can be performed easily by analyzing ~100
cycles of deidentified data, which makes it feasible for most
clinics to participate in personalization prognosis. In our
ongoing research, we aim to collaborate with other clinics
to perform this type of validation study. This approach also
allows uncommon clinical profiles to be aggregated across
centers, which improves the quality of prognostic informa-
tion. In fact, the use of a multicenter-derived prediction model
may be the most cost-effective and practical approach,
because we have found that for the prediction of live births
in first IVF cycles, the improvement offered by a clinic-
specific model (i.e.,, each of PreI[VF-BIVF, PreIVF-IVIV, or
PreIVF-OFC applied to a clinic-specific test set) over
PrelVF-D is minimal (data not shown). Nonetheless, if a clinic
determines that its demographics or protocols are sufficiently
different from cases represented by Pre[VF-D, there is always
the option to develop and validate a prediction model based
on its own data.

Another potential application is to use personalized
outcomes prediction to support patient selection for research
protocols, especially protocols that are being evaluated for
patients with poor prognosis. A general problem with
prospective interventional research trials is that large trials
may fail due to the inability to identify patients who may
benefit most from a certain new intervention, and subgroup
analyses that are not determined a priori may be criticized.
Adding an objective method to either define subgroups a priori
or to define criteria for patient recruitment is very likely to
improve the success and cost-effectiveness of research trials.

This multicenter prediction model, together with our
previous work pertaining to clinic-specific predictive
modeling, meets an urgent need to bring personalized
prognosis to the forefront for our patients. We are in the midst
of an emergence of statistical learning across medical
disciplines in which prediction models in prostate cancer,
cardiovascular disease, and chronic kidney disease have
enriched medicine with new ways of applying personalized
prognostics. However, unlike those disease areas, where
complex prediction models are still clinic specific and in the
research and development (RE&D) stage, thus not yet
accessible, we have gone beyond the RE&D stage and
established online access by patients and health care
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providers. Furthermore, the role of personalized prognostics in
reproductive medicine is much clearer. Infertility patients
would have only diminishing success rates with time whether
they choose natural, non-IVF, or IVF treatments; the threshold
probability of success needed to proceed with IVF is subject to
each patient’s own value system rather than governed by
guidelines.

Finally, our findings reveal that age-based estimates of
live birth probabilities in IVF currently provide a suboptimal
basis to guide clinical decisions by patients and providers,
because live birth probabilities are vastly underestimated for
many patients considering their first IVF cycles. Here, we
describe two brief hypothetical examples. Patient A is 38.1
years old, has a body mass index of 20.0 kg/m?, day 3 FSH
of 9.8 mIU/mL, and normal semen analysis. Patient B is
34.4 years old, has a body mass index of 24.6, day 3 FSH of
7.4 mIU/mL, and normal semen analysis. According to
PrelVF-D, the predicted probabilities of having successful
first-IVF for patients A and B are 34.1% and 49.4%,
respectively, which differ from age-based predicted
probabilities of 26.5% and 42.2% for age groups 38-40 and
<35 years, respectively (1, 4).

We do not know how many patients currently hold back
from or delay pursuing their first IVF cycle because they
perceive their success rates to be unacceptable. However,
even if a small percentage of patients who would normally
be hesitant to proceed would now feel more confident to
pursue IVF based on personalized prognosis, that represents
an increase in IVF utilization by good-to-excellent prognosis
patients, which in turn would improve the overall success
rates and utilization of IVF. Therefore, we propose that the
use of rigorously developed and validated personalized
prediction tool in the infertility community will improve
access to and utilization of ART care to help a greater number
of patients to build healthy families.
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